FirstBatch SDK
  • Get Started
    • Introduction
    • Installation
    • Quick Start
  • Learn
    • Key Concepts
      • Embeddings
      • Vector Databases
      • User Embeddings
    • Sessions
    • Signals
    • Batches
    • Algorithms
      • Batch Types
        • Random
        • Sampled
        • Personalized
        • Biased
      • Parameters & Tuning
    • Cookbook
      • Simple Flask App
      • Personalized RSS Feed
      • Personalized Mini TikTok
      • User-Intent AI Agents
      • Extending RAG: User Embeddings
      • Prompt Based User Journeys
      • User-Centric Promoted Content
  • Modules
    • FirstBatch
    • Algorithms
    • VectorStores
      • Pinecone
      • Weaviate
      • Qdrant
      • Typesense
      • Supabase
      • Chroma
Powered by GitBook
On this page
  1. Modules
  2. VectorStores

Qdrant

FirstBatch integrates Qdrant through the Qdrant Class.

Example run:

embedding_size = int(os.environ["EMBEDDING_SIZE"])
cl = QdrantClient(os.environ["QDRANT_URL"])
client = Qdrant(client=cl, collection_name="default", embedding_size=embedding_size)
cfg = Config(batch_size=20, quantizer_train_size=100, quantizer_type="scalar",
    enable_history=True, verbose=True)
personalized = FirstBatch(api_key=os.environ["FIRSTBATCH_API_KEY"], config=cfg)
personalized.add_vdb(vdb_name, cl)

Distance metric can explicitly be provided. If not, default value is COSINE_SIM

class DistanceMetric(Enum):
    COSINE_SIM = "cosine_sim"
    EUCLIDEAN_DIST = "euclidean_dist"
    DOT_PRODUCT = "dot_product"
from firstbatch import DistanceMetric

Qdrant(client=cl, collection_name="default", embedding_size=embedding_size, distance_metric=DistanceMetric.EUCLIDEAN_DIST)
PreviousWeaviateNextTypesense

Last updated 1 year ago